If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=-16t^2+125t
We move all terms to the left:
5-(-16t^2+125t)=0
We get rid of parentheses
16t^2-125t+5=0
a = 16; b = -125; c = +5;
Δ = b2-4ac
Δ = -1252-4·16·5
Δ = 15305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-125)-\sqrt{15305}}{2*16}=\frac{125-\sqrt{15305}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-125)+\sqrt{15305}}{2*16}=\frac{125+\sqrt{15305}}{32} $
| 3x-12x=90 | | 3x+25°+2x+10°=180 | | -4p-6(1-7p)=-6+7p | | 3.6+4/5b=9/10b | | -1/25r-12=-27 | | 4x-8=2x+26 | | 5x3=32 | | X=153-2x | | -96-7x=8 | | 0=4x+3(-(4÷3)x+20) | | x–27=4x | | 2(4x-3)=-22 | | 6u+3=21 | | 3/8(5x-1)-3/4(x-1)=13/2 | | 3(2+3x)=4+5x-34 | | 2n+5+n+3n=(2n+n+3n)+5=6n+5 | | (7/5x)=35 | | 1q-7=7 | | 2(4-5x)-4=24 | | 5^2x-1=20 | | 4(k-2)=3(k+5) | | 8(p+1)=24 | | x-(-6)=-14 | | (2/5x)+1/x=35 | | 19=2y-15 | | m-16=3m+6 | | 1.3f+1.9=37.44-1f | | 4p-20=7p+1 | | n-12=1/2n+91 | | 3,14*x^2=515 | | 7^3x+5=7^1−x | | 3x-1=-1+5x |